• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/75

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

75 Cards in this Set

  • Front
  • Back
1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules?
A) anabolic pathways
B) catabolic pathways
C) fermentation pathways
D) thermodynamic pathways
E) bioenergetic pathways
B) catabolic pathways
2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidation-reduction reaction
A) gains electrons and gains energy.
B) loses electrons and loses energy.
C) gains electrons and loses energy.
D) loses electrons and gains energy.
E) neither gains nor loses electrons, but gains or loses energy
B) loses electrons and loses energy
3) When electrons move closer to a more electronegative atom, what happens?
A) Energy is released.
B) Energy is consumed.
C) The more electronegative atom is reduced.
D) The more electronegative atom is oxidized.
E) A and C are correct.
E) A and C are correct.
4) Why does the oxidation of organic compounds by molecular oxygen to produce CO2 and water release free
energy?
A) The covalent bonds in organic molecules are higher energy bonds than those in water and carbon dioxide.
B) Electrons are being moved from atoms that have a lower affinity for electrons (such as C) to atoms with a
higher affinity for electrons (such as O).
C) The oxidation of organic compounds can be used to make ATP.
D) The electrons have a higher potential energy when associated with water and CO2 than they do in
organic compounds.
E) The covalent bond in O2 is unstable and easily broken by electrons from organic molecules.
B) Electrons are being moved from atoms that have a lower affinity for electrons (such as C) to atoms with a
higher affinity for electrons (such as O).
5) Which of the following statements describes the results of this reaction?
C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + Energy
A) C6H12O6 is oxidized and O2 is reduced.
B) O2 is oxidized and H2O is reduced.
C) CO2 is reduced and O2 is oxidized.
D) C6H12O6 is reduced and CO2 is oxidized.
E) O2 is reduced and CO2 is oxidized.
A) C6H12O6 is oxidized and O2 is reduced
7) When a molecule of NAD+ (nicotinamide adenine dinucleotide) gains a hydrogen atom (not a hydrogen ion)
the molecule becomes
A) hydrogenated.
B) oxidized.
C) reduced.
D) redoxed.
E) a reducing agent
C) reduced.
8) Which of the following statements describes NAD+?
A) NAD+ is reduced to NADH during both glycolysis and the citric acid cycle.
B) NAD+ has more chemical energy than NADH.
C) NAD+ is reduced by the action of hydrogenases.
D) NAD+ can donate electrons for use in oxidative phosphorylation.
E) In the absence of NAD+, glycolysis can still function.
A) NAD+ is reduced to NADH during both glycolysis and the citric acid cycle.
9) Where does glycolysis takes place?
A) mitochondrial matrix
B) mitochondrial outer membrane
C) mitochondrial inner membrane
D) mitochondrial intermembrane space
E) cytosol
E) cytosol
10) The ATP made during glycolysis is generated by
A) substrate-level phosphorylation.
B) electron transport.
C) photophosphorylation.
D) chemiosmosis.
E) oxidation of NADH to NAD+.
A) substrate-level phosphorylation.
11) The oxygen consumed during cellular respiration is involved directly in which process or event?
A) glycolysis
B) accepting electrons at the end of the electron transport chain
C) the citric acid cycle
D) the oxidation of pyruvate to acetyl CoA
E) the phosphorylation of ADP to form ATP
B) accepting electrons at the end of the electron transport chain
12) Which process in eukaryotic cells will proceed normally whether oxygen (O2) is present or absent?
A) electron transport
B) glycolysis
C) the citric acid cycle
D) oxidative phosphorylation
E) chemiosmosis
B) glycolysis
13) An electron loses potential energy when it
A) shifts to a less electronegative atom.
B) shifts to a more electronegative atom.
C) increases its kinetic energy.
D) increases its activity as an oxidizing agent.
E) attaches itself to NAD+.
B) shifts to a more electronegative atom
14) Why are carbohydrates and fats considered high energy foods?
A) They have a lot of oxygen atoms.
B) They have no nitrogen in their makeup.
C) They can have very long carbon skeletons.
D) They have a lot of electrons associated with hydrogen.
E) They are easily reduced.
D) They have a lot of electrons associated with hydrogen.
20) Substrate-level phosphorylation accounts for approximately what percentage of the ATP formed during
glycolysis?
A) 0%
B) 2%
C) 10%
D) 38%
E) 100%
E) 100%
21) During glycolysis, when glucose is catabolized to pyruvate, most of the energy of glucose is
A) transferred to ADP, forming ATP.
B) transferred directly to ATP.
C) retained in the pyruvate.
D) stored in the NADH produced.
E) used to phosphorylate fructose to form fructose-6-phosphate
C) retained in the pyruvate.
22) In addition to ATP, what are the end products of glycolysis?
A) CO2 and H2O
B) CO2 and pyruvate
C) NADH and pyruvate
D) CO2 and NADH
E) H2O, FADH2, and citrate
C) NADH and pyruvate
24) Starting with one molecule of glucose, the ʺnetʺ products of glycolysis are
A) 2 NAD+, 2 H+, 2 pyruvate, 2 ATP, and 2 H2O.
B) 2 NADH, 2 H+, 2 pyruvate, 2 ATP, and 2 H2O.
C) 2 FADH2, 2 pyruvate, 4 ATP, and 2 H2O.
D) 6 CO2, 6 H2O, 2 ATP, and 2 pyruvate.
E) 6 CO2, 6 H2O, 36 ATP, and 2 citrate
B) 2 NADH, 2 H+, 2 pyruvate, 2 ATP, and 2 H2O
25) In glycolysis, for each molecule of glucose oxidized to pyruvate
A) 2 molecules of ATP are used and 2 molecules of ATP are produced.
B) 2 molecules of ATP are used and 4 molecules of ATP are produced.
C) 4 molecules of ATP are used and 2 molecules of ATP are produced.
D) 2 molecules of ATP are used and 6 molecules of ATP are produced.
E) 6 molecules of ATP are used and 6 molecules of ATP are produced
B) 2 molecules of ATP are used and 4 molecules of ATP are produced
26) A molecule that is phosphorylated
A) has been reduced as a result of a redox reaction involving the loss of an inorganic phosphate.
B) has a decreased chemical reactivity; it is less likely to provide energy for cellular work.
C) has been oxidized as a result of a redox reaction involving the gain of an inorganic phosphate.
D) has an increased chemical reactivity; it is primed to do cellular work.
E) has less energy than before its phosphorylation and therefore less energy for cellular work.
D) has an increased chemical reactivity; it is primed to do cellular work
27) Which kind of metabolic poison would most directly interfere with glycolysis?
A) an agent that reacts with oxygen and depletes its concentration in the cell
B) an agent that binds to pyruvate and inactivates it
C) an agent that closely mimics the structure of glucose but is not metabolized
D) an agent that reacts with NADH and oxidizes it to NAD+
E) an agent that blocks the passage of electrons along the electron transport chain
C) an agent that closely mimics the structure of glucose but is not metabolized
28) Why is glycolysis described as having an investment phase and a payoff phase?
A) It both splits molecules and assembles molecules.
B) It attaches and detaches phosphate groups.
C) It uses glucose and generates pyruvate.
D) It shifts molecules from cytosol to mitochondrion.
E) It uses stored ATP and then forms a net increase in ATP.
E) It uses stored ATP and then forms a net increase in ATP.
In the presence of oxygen, the three-carbon compound pyruvate can be catabolized in the citric acid cycle. First, however,
the pyruvate 1) loses a carbon, which is given off as a molecule of CO2, 2) is oxidized to form a two-carbon compound
called acetate, and 3) is bonded to coenzyme A.
29) These three steps result in the formation of
A) acetyl CoA, O2, and ATP.
B) acetyl CoA, FADH2, and CO2.
C) acetyl CoA, FAD, H2, and CO2.
D) acetyl CoA, NADH, H+, and CO2.
E) acetyl CoA, NAD+, ATP, and CO2.
D) acetyl CoA, NADH, H+, and CO2.
31) How does pyruvate enter the mitochondrion?
A) active transport
B) diffusion
C) facilitated diffusion
D) through a channel
E) through a pore
A) active transport
32) Which of the following intermediary metabolites enters the citric acid cycle and is formed, in part, by the
removal of a carbon (CO2) from one molecule of pyruvate?
A) lactate
B) glyceraldehydes-3-phosphate
C) oxaloacetate
D) acetyl CoA
E) citrate
D) acetyl CoA
33) During cellular respiration, acetyl CoA accumulates in which location?
A) cytosol
B) mitochondrial outer membrane
C) mitochondrial inner membrane
D) mitochondrial intermembrane space
E) mitochondrial matrix
E) mitochondrial matrix
34) How many carbon atoms are fed into the citric acid cycle as a result of the oxidation of one molecule of
pyruvate?
A) 2
B) 4
C) 6
D) 8
E) 10
A) 2
35) Starting with one molecule of isocitrate and ending with fumarate, what is the maximum number of ATP
molecules that could be made through substrate-level phosphorylation?
A) 1
B) 2
C) 11
D) 12
E) 24
A) 1
36) Carbon skeletons for amino acid biosynthesis are supplied by intermediates of the citric acid cycle. Which
intermediate would supply the carbon skeleton for synthesis of a five-carbon amino acid?
A) succinate
B) malate
C) citrate
D) α-ketoglutarate
E) isocitrate
D) α-ketoglutarate
37) How many molecules of carbon dioxide (CO2) would be produced by five turns of the citric acid cycle?
A) 2
B) 5
C) 10
D) 12
E) 60
C) 10
38) How many reduced dinucleotides would be produced with four turns of the citric acid cycle?
A) 1 FADH2 and 4 NADH
B) 2 FADH2 and 8 NADH
C) 4 FADH2 and 12 NADH
D) 1 FAD and 4 NAD+
E) 4 FAD+ and 12 NAD+
C) 4 FADH2 and 12 NADH
39) Starting with citrate, which of the following combinations of products would result from three turns of the
citric acid cycle?
A) 1 ATP, 2 CO2, 3 NADH, and 1 FADH2
B) 2 ATP, 2 CO2, 1 NADH, and 3 FADH2
C) 3 ATP, 3 CO2, 3 NADH, and 3 FADH2
D) 3 ATP, 6 CO2, 9 NADH, and 3 FADH2
E) 38 ATP, 6 CO2, 3 NADH, and 12 FADH2
D) 3 ATP, 6 CO2, 9 NADH, and 3 FADH2
40) Carbon dioxide (CO2) is released during which of the following stages of cellular respiration?
A) glycolysis and the oxidation of pyruvate to acetyl CoA
B) oxidation of pyruvate to acetyl CoA and the citric acid cycle
C) the citric acid cycle and oxidative phosphorylation
D) oxidative phosphorylation and fermentation
E) fermentation and glycolysis
B) oxidation of pyruvate to acetyl CoA and the citric acid cycle
41) For each molecule of glucose that is metabolized by glycolysis and the citric acid cycle, what is the total number
of NADH + FADH2 molecules produced?
A) 4
B) 5
C) 6
D) 10
E) 12
E) 12
42) A young animal has never had much energy. He is brought to a veterinarian for help and is sent to the animal
hospital for some tests. There they discover his mitochondria can use only fatty acids and amino acids for
respiration, and his cells produce more lactate than normal. Of the following, which is the best explanation of
his condition?
A) His mitochondria lack the transport protein that moves pyruvate across the outer mitochondrial
membrane.
B) His cells cannot move NADH from glycolysis into the mitochondria.
C) His cells contain something that inhibits oxygen use in his mitochondria.
D) His cells lack the enzyme in glycolysis that forms pyruvate.
E) His cells have a defective electron transport chain, so glucose goes to lactate instead of to acetyl CoA.
A) His mitochondria lack the transport protein that moves pyruvate across the outer mitochondrial
membrane
43) Cellular respiration harvests the most chemical energy from which of the following?
A) substrate-level phosphorylation
B) chemiosmotic phosphorylation
C) converting oxygen to ATP
D) transferring electrons from organic molecules to pyruvate
E) generating carbon dioxide and oxygen in the electron transport chain
B) chemiosmotic phosphorylation
44) During aerobic respiration, electrons travel downhill in which sequence?
A) food → citric acid cycle → ATP → NAD+
B) food → NADH → electron transport chain → oxygen
C) glucose → pyruvate → ATP → oxygen
D) glucose → ATP → electron transport chain → NADH
E) food → glycolysis → citric acid cycle → NADH → ATP
B) food → NADH → electron transport chain → oxygen
45) Where are the proteins of the electron transport chain located?
A) cytosol
B) mitochondrial outer membrane
C) mitochondrial inner membrane
D) mitochondrial intermembrane space
E) mitochondrial matrix
C) mitochondrial inner membrane
46) Which of the following describes the sequence of electron carriers in the electron transport chain, starting with
the least electronegative?
A) ubiquinone (Q), cytochromes (Cyt), FMN, Fe•S
B) cytochromes (Cyt), FMN, ubiquinone, Fe•S
C) Fe•S, FMN, cytochromes (Cyt), ubiquinone
D) FMN, Fe•S, ubiquinone, cytochromes (Cyt)
E) cytochromes (Cyt), Fe•S, ubiquinone, FMN
D) FMN, Fe•S, ubiquinone, cytochromes (Cyt)
47) During aerobic respiration, which of the following directly donates electrons to the electron transport chain at
the lowest energy level?
A) NAD+
B) NADH
C) ATP
D) ADP + Pi
E) FADH2
E) FADH2
49) Inside an active mitochondrion, most electrons follow which pathway?
A) glycolysis → NADH → oxidative phosphorylation → ATP → oxygen
B) citric acid cycle → FADH2 → electron transport chain → ATP
C) electron transport chain → citric acid cycle → ATP → oxygen
D) pyruvate → citric acid cycle → ATP → NADH → oxygen
E) citric acid cycle → NADH → electron transport chain → oxygen
E) citric acid cycle → NADH → electron transport chain → oxygen
50) During oxidative phosphorylation, H2O is formed. Where does the oxygen for the synthesis of the water come
from?
A) carbon dioxide (CO2)
B) glucose (C6H12O6)
C) molecular oxygen (O2)
D) pyruvate (C3H3O3-)
E) lactate (C3H5O3-)
C) molecular oxygen (O2)
51) In chemiosmotic phosphorylation, what is the most direct source of energy that is used to convert ADP + Pi to
ATP?
A) energy released as electrons flow through the electron transport system
B) energy released from substrate-level phosphorylation
C) energy released from ATP synthase pumping hydrogen ions from the mitochondrial matrix
D) energy released from movement of protons through ATP synthase
E) No external source of energy is required because the reaction is exergonic
D) energy released from movement of protons through ATP synthase
52) Energy released by the electron transport chain is used to pump H+ ions into which location?
A) cytosol
B) mitochondrial outer membrane
C) mitochondrial inner membrane
D) mitochondrial intermembrane space
E) mitochondrial matrix
D) mitochondrial intermembrane space
53) The direct energy source that drives ATP synthesis during respiratory oxidative phosphorylation is
A) oxidation of glucose to CO2 and water.
B) the thermodynamically favorable flow of electrons from NADH to the mitochondrial electron transport
carriers.
C) the final transfer of electrons to oxygen.
D) the difference in H+ concentrations on opposite sides of the inner mitochondrial membrane.
E) the thermodynamically favorable transfer of phosphate from glycolysis and the citric acid cycle
intermediate molecules of ADP.
D) the difference in H+ concentrations on opposite sides of the inner mitochondrial membrane
54) When hydrogen ions are pumped from the mitochondrial matrix across the inner membrane and into the
intermembrane space, the result is the
A) formation of ATP.
B) reduction of NAD+.
C) restoration of the Na+/K+ balance across the membrane.
D) creation of a proton gradient.
E) lowering of pH in the mitochondrial matrix.
D) creation of a proton gradient.
55) Where is ATP synthase located in the mitochondrion?
A) cytosol
B) electron transport chain
C) outer membrane
D) inner membrane
E) mitochondrial matrix
D) inner membrane
56) It is possible to prepare vesicles from portions of the inner membrane of the mitochondrial components. Which
one of the following processes could still be carried on by this isolated inner membrane?
A) the citric acid cycle
B) oxidative phosphorylation
C) glycolysis and fermentation
D) reduction of NAD+
E) both the citric acid cycle and oxidative phosphorylation
B) oxidative phosphorylation
57) Each time a molecule of glucose (C6H12O6) is completely oxidized via aerobic respiration, how many oxygen
molecules (O2) are required?
A) 1
B) 2
C) 6
D) 12
E) 38
C) 6
58) Which of the following produces the most ATP when glucose (C6H12O6) is completely oxidized to carbon
dioxide (CO2) and water?
A) glycolysis
B) fermentation
C) oxidation of pyruvate to acetyl CoA
D) citric acid cycle
E) oxidative phosphorylation (chemiosmosis)
E) oxidative phosphorylation (chemiosmosis)
59) Approximately how many molecules of ATP are produced from the complete oxidation of two molecules of
glucose (C6H12O6) in cellular respiration?
A) 2
B) 4
C) 15
D) 38
E) 76
E) 76
60) Assume a mitochondrion contains 58 NADH and 19 FADH2. If each of the 77 dinucleotides were used,
approximately how many ATP molecules could be generated as a result of oxidative phosphorylation
(chemiosmosis)?
A) 36
B) 77
C) 173
D) 212
E) 1102
D) 212
61) Approximately what percentage of the energy of glucose (C6H12O6) is transferred to storage in ATP as a result
of the complete oxidation of glucose to CO2 and water in cellular respiration?
A) 2%
B) 4%
C) 10%
D) 25%
E) 40%
E) 40%
62) Recall that the complete oxidation of a mole of glucose releases 686 kcal of energy (ΔG = -686 kcal/mol). The
phosphorylation of ADP to form ATP stores approximately 7.3 kcal per mole of ATP. What is the approximate
efficiency of cellular respiration for a ʺmutantʺ organism that produces only 29 moles of ATP for every mole of
glucose oxidized, rather than the usual 36-38 moles of ATP?
A) 0.4%
B) 25%
C) 30%
D) 40%
E) 60%
C) 30%
63) What is proton-motive force?
A) the force required to remove an electron from hydrogen
B) the transmembrane proton concentration gradient
C) movement of hydrogen into the intermembrane space
D) movement of hydrogen into the mitochondrion
E) the addition of hydrogen to NAD+
B) the transmembrane proton concentration gradient
64) In liver cells, the inner mitochondrial membranes are about 5 X the area of the outer mitochondrial membranes,
and about 17 X that of the cellʹs plasma membrane. What purpose must this serve?
A) It allows for increased rate of glycolysis.
B) It allows for increased rate of the citric acid cycle.
C) It increases the surface for oxidative phosphoryation.
D) It increases the surface for substrate-level phosphorylation.
E) It allows the liver cell to have fewer mitochondria.
C) It increases the surface for oxidative phosphoryation.
Exposing inner mitochondrial membranes to ultrasonic vibrations will disrupt the membranes. However, the fragments will
reseal ʺinside out.ʺ These little vesicles that result can still transfer electrons from NADH to oxygen and synthesize ATP. If
the membranes are agitated still further however, the ability to synthesize ATP is lost.
65) After the first disruption, when electron transfer and ATP synthesize still occur, what must be present?
A) all of the electron transport proteins as well as ATP synthase
B) all of the electron transport system and the ability to add CoA to acetyl groups
C) the ATP synthase system is sufficient
D) the electron transport system is sufficient
E) plasma membranes like those bacteria use for respiration
A) all of the electron transport proteins as well as ATP synthase
Exposing inner mitochondrial membranes to ultrasonic vibrations will disrupt the membranes. However, the fragments will
reseal ʺinside out.ʺ These little vesicles that result can still transfer electrons from NADH to oxygen and synthesize ATP. If
the membranes are agitated still further however, the ability to synthesize ATP is lost.
66) After the second agitation of the membrane vesicles, what must be lost from the membrane?
A) the ability of NADH to transfer electrons to the first acceptor in the electron transport chain
B) the prosthetic groups like heme from the transport system
C) cytochromes
D) ATP synthase, in whole or in part
E) the contact required between inner and outer membrane surfaces
D) ATP synthase, in whole or in part
Exposing inner mitochondrial membranes to ultrasonic vibrations will disrupt the membranes. However, the fragments will
reseal ʺinside out.ʺ These little vesicles that result can still transfer electrons from NADH to oxygen and synthesize ATP. If
the membranes are agitated still further however, the ability to synthesize ATP is lost.
67) It should be possible to reconstitute the abilities of the vesicles if which of the following is added?
A) cytochromes
B) extra NADH
C) a second membrane surface
D) more electrons
E) intact ATP synthase
E) intact ATP synthase
72) Which of the following couples chemiosmosis to energy storage?
A) NADH
B) FADH2
C) cytochromes
D) electron transport
E) ATP synthase
E) ATP synthase
73) Which of the following describes ubiquinone?
A) a protein in the electron transport chain
B) a small hydrophobic coenzyme
C) a substrate for synthesis of FADH
D) a vitamin needed for efficient glycolysis
E) an essential amino acid
B) a small hydrophobic coenzyme
74) Which of the following normally occurs whether or not oxygen (O2) is present?
A) glycolysis
B) fermentation
C) oxidation of pyruvate to acetyl CoA
D) citric acid cycle
E) oxidative phosphorylation (chemiosmosis)
A) glycolysis
78) In the absence of oxygen, yeast cells can obtain energy by fermentation, resulting in the production of
A) ATP, CO2, and ethanol (ethyl alcohol).
B) ATP, CO2, and lactate.
C) ATP, NADH, and pyruvate.
D) ATP, pyruvate, and oxygen.
E) ATP, pyruvate, and acetyl CoA.
A) ATP, CO2, and ethanol (ethyl alcohol).
79) In alcohol fermentation, NAD+ is regenerated from NADH during which of the following?
A) reduction of acetaldehyde to ethanol (ethyl alcohol)
B) oxidation of pyruvate to acetyl CoA
C) reduction of pyruvate to form lactate
D) oxidation of NAD+ in the citric acid cycle
E) phosphorylation of ADP to form ATP
A) reduction of acetaldehyde to ethanol (ethyl alcohol)
80) One function of both alcohol fermentation and lactic acid fermentation is to
A) reduce NAD+ to NADH.
B) reduce FAD+ to FADH2.
C) oxidize NADH to NAD+.
D) reduce FADH2 to FAD+.
E) none of the above
C) oxidize NADH to NAD+.
83) Why is glycolysis considered to be one of the first metabolic pathways to have evolved?
A) It produces much less ATP than does oxidative phosphorylation.
B) It is found in the cytosol, does not involve oxygen, and is present in most organisms.
C) It is found in prokaryotic cells but not in eukaryotic cells.
D) It relies on chemiosmosis which is a metabolic mechanism present only in the first cells-prokaryotic cells.
E) It requires the presence of membrane-enclosed cell organelles found only in eukaryotic cells.
B) It is found in the cytosol, does not involve oxygen, and is present in most organisms.
84) Muscle cells, when an individual is exercising heavily and when the muscle becomes oxygen deprived, convert
pyruvate to lactate. What happens to the lactate in skeletal muscle cells?
A) It is converted to NAD+.
B) It produces CO2 and water.
C) It is taken to the liver and converted back to pyruvate.
D) It reduces FADH2 to FAD+.
E) It is converted to alcohol.
C) It is taken to the liver and converted back to pyruvate.
85) When muscle cells are oxygen deprived, the heart still pumps. What must the heart cells be able to do?
A) derive sufficient energy from fermentation
B) continue aerobic metabolism when skeletal muscle cannot
C) transform lactate to pyruvate again
D) remove lactate from the blood
E) remove oxygen from lactate
B) continue aerobic metabolism when skeletal muscle cannot
86) When muscle cells undergo anaerobic respiration, they become fatigued and painful. This is now known to be
caused by
A) buildup of pyruvate.
B) buildup of lactate.
C) increase in sodium ions.
D) increase in potassium ions.
E) increase in ethanol.
D) increase in potassium ions.
87) You have a friend who lost 7 kg (about 15 pounds) of fat on a ʺlow carbʺ diet. How did the fat leave her body?
A) It was released as CO2 and H2O.
B) Chemical energy was converted to heat and then released.
C) It was converted to ATP, which weighs much less than fat.
D) It was broken down to amino acids and eliminated from
A) It was released as CO2 and H2O.
88) Phosphofructokinase is an important control enzyme in the regulation of cellular respiration. Which of the
following statements describes a function of phosphofructokinase?
A) It is activated by AMP (derived from ADP).
B) It is activated by ATP.
C) It is inhibited by citrate, an intermediate of the citric acid cycle.
D) It catalyzes the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate, an early step of
glycolysis.
E) It is an allosteric enzyme.
E) It is an allosteric enzyme
89) Phosphofructokinase is an allosteric enzyme that catalyzes the conversion of fructose -6-phosphate to
fructose-1,6-bisphosphate, an early step of glycolysis. In the presence of oxygen, an increase in the amount
ATP in a cell would be expected to
A) inhibit the enzyme and thus slow the rates of glycolysis and the citric acid cycle.
B) activate the enzyme and thus slow the rates of glycolysis and the citric acid cycle.
C) inhibit the enzyme and thus increase the rates of glycolysis and the citric acid cycle.
D) activate the enzyme and increase the rates of glycolysis and the citric acid cycle.
E) inhibit the enzyme and thus increase the rate of glycolysis and the concentration of citrate.
A) inhibit the enzyme and thus slow the rates of glycolysis and the citric acid cycle
90) Even though plants carry on photosynthesis, plant cells still use their mitochondria for oxidation of pyruvate.
When and where will this occur?
A) in photosynthetic cells in the light, while photosynthesis occurs concurrently
B) in non-photosynthesizing cells only
C) in cells that are storing glucose only
D) in photosynthesizing cells in dark periods and in other tissues all the time
E) in photosynthesizing cells in the light and in other tissues in the dark
D) in photosynthesizing cells in dark periods and in other tissues all the time
91) In vertebrate animals, brown fat tissueʹs color is due to abundant mitochondria. White fat tissue, on the other
hand, is specialized for fat storage and contains relatively few mitochondria. Brown fat cells have a specialized
protein that dissipates the proton-motive force across the mitochondrial membranes. Which of the following
might be the function of the brown fat tissue?
A) to increase the rate of oxidative phosphorylation from its few mitochondria
B) to allow the animals to regulate their metabolic rate when it is especially hot
C) to increase the production of ATP synthase
D) to allow other membranes of the cell to perform mitochondrial function
E) to regulate temperature by converting energy from NADH oxidation to heat
E) to regulate temperature by converting energy from NADH oxidation to heat
92) What is the purpose of beta oxidation in respiration?
A) oxidation of glucose
B) oxidation of pyruvate
C) feedback regulation
D) control of ATP accumulation
E) breakdown of fatty acids
E) breakdown of fatty acids
93) Where do the catabolic products of fatty acid breakdown enter into the citric acid cycle?
A) pyruvate
B) malate or fumarate
C) acetyl CoA
D) α-ketoglutarate
E) succinyl CoA
C) acetyl CoA