Odd numbers were thought of as female and even numbers as male.” Pythagoras’ Theorem and the properties of right-angled triangles seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry, and it was touched on in some of the most ancient mathematical texts from Egypt , dating from over a thousand years earlier. One of the simplest proofs comes from ancient China, and probably dates from well before Pythagoras' birth. It was Pythagoras, though, who gave the theorem its definitive form, although it is not clear whether Pythagoras himself definitively proved it or merely described it. Either way, it has become one of the best-known of all mathematical theorems, and as many as 400 different geometrical, some algebraic, some involving advanced differential equations, etc. proofs now exist, some geometrical, some algebraic, some involving advanced differential equations. Pythagoreans were interested in philosophy, but especially in music and mathematics, two ways of making order out of chaos. …show more content…
Written as an equation: a2 + b2 = c2. What Pythagoras and his followers did not realize is that this also works for any shape: thus, the area of a pentagon on the hypotenuse is equal to the sum of the pentagons on the other two sides, as it does for a semi-circle or any other regular (or even irregular( shape.” Pythagoras was the famous Greek mathematicians and in his time many had used his work and created , “It soom became apparent, though, that non-integer solutions were also possible, so that an isosceles triangle with sides 1, 1 and √2, for example, also has a right angle, as the Babylonians had discovered centuries earlier. However, when Pythagoras’s student Hippasus tried to calculate the value of √2, he found that it was not possible to express it as a fraction, thereby indicating the potential existence of a whole new world of numbers, the irrational numbers (numbers that can not be expressed as simple fractions of integers). This discovery rather shattered the elegant mathematical world built up by Pythagoras and his followers, and the existence of a number that could not be expressed as the ratio of two of God's creations (which is how they